Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Cell Death Dis ; 9(12): 1185, 2018 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-30538221

RESUMO

Fluorouracil (5-FU) is the first-line chemotherapeutic drug for cholangiocarcinoma (CCA), but its efficacy has been compromised by the development of resistance. Development of 5-FU resistance is associated with elevated expression of its cellular target, thymidylate synthase (TYMS). E2F1 transcription factor has previously been shown to modulate the expression of FOXM1 and TYMS. Immunohistochemical (IHC) analysis revealed a strong correlated upregulation of FOXM1 (78%) and TYMS (48%) expression at the protein levels in CCA tissues. In agreement, RT-qPCR and western blot analyses of four human CCA cell lines at the baseline level and in response to high doses of 5-FU revealed good correlations between FOXM1 and TYMS expression in the CCA cell lines tested, except for the highly 5-FU-resistant HuCCA cells. Consistently, siRNA-mediated knockdown of FOXM1 reduced the clonogenicity and TYMS expression in the relatively sensitive KKU-D131 but not in the highly resistant HuCCA cells. Interestingly, silencing of TYMS sensitized both KKU-D131 and HuCCA to 5-FU treatment, suggesting that resistance to very high levels of 5-FU is due to the inability of the genotoxic sensor FOXM1 to modulate TYMS expression. Consistently, ChIP analysis revealed that FOXM1 binds efficiently to the TYMS promoter and modulates TYMS expression at the promoter level upon 5-FU treatment in KKU-D131 but not in HuCCA cells. In addition, E2F1 expression did not correlate with either FOXM1 or TYMS expression and E2F1 depletion has no effects on the clonogenicity and TYMS expression in the CCA cells. In conclusion, our data show that FOXM1 regulates TYMS expression to modulate 5-FU resistance in CCA and that severe 5-FU resistance can be caused by the uncoupling of the regulation of TYMS by FOXM1. Our findings suggest that the FOXM1-TYMS axis can be a novel diagnostic, predictive and prognostic marker as well as a therapeutic target for CCA.


Assuntos
Neoplasias dos Ductos Biliares/tratamento farmacológico , Colangiocarcinoma/tratamento farmacológico , Proteína Forkhead Box M1/genética , Timidilato Sintase/genética , Apoptose/efeitos dos fármacos , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Colangiocarcinoma/genética , Colangiocarcinoma/patologia , Resistencia a Medicamentos Antineoplásicos/genética , Fluoruracila/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , RNA Interferente Pequeno/genética
4.
Methods Mol Biol ; 1436: 169-88, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27246215

RESUMO

Acetylation has been shown to be an important posttranslational modification (PTM) of both histone and nonhistone proteins with particular implications in cell signaling and transcriptional regulation of gene expression. Many studies have already demonstrated that SIRT1 is able to deacetylate histones and lead to gene silencing. It can also regulate the function of tumor suppressors including FOXO proteins and p53 by deacetylation. Here, we describe three experimental approaches for studying the modulation of the acetylation status of some of the known downstream targets of SIRT1.


Assuntos
Fatores de Transcrição Forkhead/metabolismo , Histonas/metabolismo , Sirtuína 1/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Acetilação , Animais , Western Blotting , Epigênese Genética , Regulação da Expressão Gênica , Inativação Gênica , Humanos , Imunoprecipitação , Células MCF-7 , Camundongos , Mutagênese Sítio-Dirigida , Sirtuína 1/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...